Chiral plasmonics
نویسندگان
چکیده
We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, complex nanoparticle arrangements of up to hundreds of individual nanoparticles have been realized. Beyond this static picture, we also give an overview of recent demonstrations of active chiral plasmonic systems, where the chiral optical response can be controlled by an external stimulus. We discuss the prospect of using the unique properties of complex chiral plasmonic systems for enantiomeric sensing schemes.
منابع مشابه
Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods
An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...
متن کاملChiral Plasmonics Using Twisting along Cellulose Nanocrystals as a Template for Gold Nanoparticles.
The right-handed twist along aqueous dispersed cellulose nanocrystals allows right-handed chiral plasmonics upon electrostatic binding of gold nanoparticles in dilute environment, through tuning the particle sizes and concentrations. Simulations using nanoparticle coordinates from cryo-electron tomography confirm the experimental results. The finding suggests generalization for other chiral and...
متن کاملMagnesium plasmonics for UV applications and chiral sensing.
We demonstrate that chiral magnesium nanoparticles show remarkable plasmonic extinction- and chiroptical-effects in the ultraviolet region. The Mg nanohelices possess an enhanced local surface plasmon resonance (LSPR) sensitivity due to the strong dispersion of most substances in the UV region.
متن کاملUnderstanding complex chiral plasmonics.
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical res...
متن کاملChiral plasmonics of self-assembled nanorod dimers
Chiral nanoscale photonic systems typically follow either tetrahedral or helical geometries that require four or more different constituent nanoparticles. Smaller number of particles and different chiral geometries taking advantage of the self-organization capabilities of nanomaterials will advance understanding of chiral plasmonic effects, facilitate development of their theory, and stimulate ...
متن کامل